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Transient methods are widely used to determine the thermal transport properties of dielectrics 
and other materials. In some situations they can be used in case of homogeneous media to 
measure several properties either simultaneously or separately. In this context analytical 
model are available and a well-posed inverse problem of parameter identification has to be 
solved. The examination of composite media is more complicated and only a few results are 
known. The algorithm proposed here allows to simultaneously determine the thermal 
conductivity and thermal diffusivity of layered dielectrics by transient measurements. It is 
based on a plane source which acts both as a resistive heater and temperature sensor. For the 
technique to be successful two essential aspects have to be considered: firstly, the 
mathematical modeling of the measured data (the forward problem) and secondly, the 
problem of ill-posedness of the inverse problem. For the proposed measurement 
configuration, a new fast data analysis algorithm based on an analytic solution for the forward 
problem is presented. In principle, a numerical solution such as FEM solution of the heat 
conduction equation can be used instead of the analytical one, but the computational effort is 
much greater. The inverse problem is formulated as an output-least squares problem, which 
leads to a transcendent algebraic system of equations. The method was successfully tested for 
different situations.  
 
 

1 INTRODUCTION 

Information on thermal transport properties has increasingly gained in importance in the fields 
of engineering which try to reduce the energy involved, e.g., in process engineering and in the 
building industry. In the case of homogeneous media, besides classical steady-state methods, 
alternative transient techniques are now becoming widely used worldwide for all types of 
material (cf. [1] – [5]). The thermal conductivity λ and the thermal diffusivity a are derived 
quantities and, thus, cannot be  measured directly. They rather have to be determined from  
related quantities, e.g., a temperature profile. In general, a heat flow of known rate, Φ, is 
passed through the material under test and the associated temperature profile T  is 
measured depending on the thermal properties. In several situations, these methods can be 
used to measure several properties either simultaneously or separately. In this context a well-
posed inverse problem of parameter identification has to be solved. 

( t,x )

The examination of composite media has only recently been considered with only a few 
results; cf. [6]-[9]. Analytic approximations of the solution of the forward problem, that 
means the simulation of the measuring signal are available for homogeneous media, which in 
general loses its validity for layered composites. A way out is the application of numerical 
methods as finite-element and finite-difference methods but at the expense of considerable 
computational effort. 
For the measurement configuration proposed here, a new fast data analysis is derived on the 
basis of an analytic solution of the heat conduction equation with piecewise-constant thermal 
transport properties corresponding to the separate layers. It allows the thermal conductivity 
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and thermal diffusivity of layered dielectrics to be simultaneously determine by transient 
measurements. A plane heat source consisting of thin metal foil acts both as a resistive heater 
and as a temperature sensor. 
In the first part of Section 2, the mathematical model for the transient temperature distribution 
applied to the proposed method is given. An analytic expression describing the measuring 
signal based on the Green’s function formulation is derived in the second part. The section 
ends with the output-least squares algorithm for the inverse problem, which leads to a trans-
cendent algebraic system of equations.  
In Section 3, the theoretical ideas of Section 2 are successfully applied to a layered sample 
where the algorithm is split into two steps. In the first step, the properties of the inner core and 
in the second step, those of the outer layer are identified. Summary is given in Section 4. 
 
 
2 THEORY 
 
2.1. The mathematical model 
 
The data analysis of the implicit measuring method consists of two parts: The first part is the 
so-called forward problem for which a mathematical model is derived relating the 
measurement data to the thermal properties; this means that for known thermal properties of 
the sample and a known experimental set-up, the corresponding measuring signal can be 
simulated. The second part is the inverse problem; for given measuring signal and a known 
experimental set-up, the thermal transport properties have to be identified. 
The principle of the method proposed is shown in Figure 1. A current-carrying metallic foil is 
clamped between two layered sample halves and simultaneously acts as a temperature sensor. 
This method works similar to the hot strip technique: Both are based on a step-wise heat 
source which is combined with the temperature sensor. The difference consists in the heat 
source geometry, on the one hand a plane source and on the other a hot strip. In another 
conceivable version, the temperature response could be measured by a separate sensor placed 
a distance h from the heat source but within the inner layer. It describes a step-wise transient 
technique based on separated heat source and temperature sensor. 
 
 

heat source

inner layer
outer layer

 
 
        Figure 1.  Schematic diagram of the specimen for the proposed method 
 
The choice of a plane source geometry provides the possibility of modeling the heat transfer 
process as a one-dimensional problem. Even in case of multi-layered composites, an analytic 
solution of the corresponding partial differential equation for heat transfer can be derived as a 
solution of the forward problem. The length and width of the foil have to be sufficiently large 
for the heat losses at the surface to be negligible. Another way allowing one-dimensional 
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modeling of the temperature response may realized by total insulation at the surface, i.e. the 
assumption of homogeneous boundary condition of the second kind. 
 
The one-dimensional formulation of the transient heat conduction problem for a m-layered 
slab is given as follows. The interfaces between the layers are located at x = xi , i = 1,2,...,m-1 
and the outer boundary surfaces at x0 and xm . Let λi be the thermal conductivity and ai the 
thermal diffusivity of the i-th layer, xi-1 <  x ≤ xi , i = 1,...,m . We get the differential equation 
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The heat source q is restricted to the thin foil and the thermal diffusivity a and the thermal 
conductivity λ depend on the diffusivities and conductivities of the single layers 
 
     a(x) = ai ,       λ(x) = λi  ,       xi-1 <  x ≤  xi  . 
 
The initial temperature at t = 0 
 
           T(x,0) = T0(x) ,                 x0 ≤ x ≤ xm                                                                                         (2) 
 
can be different for each layer and also vary within a layer. At the outer boundaries we write 
the general form   
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where  and T)(1 tT m(t) stand for the− possibly time-dependent − ambient temperature of the 
first and the m-th (last) layer, respectively. Additional boundary conditions at the layer 
interfaces have to be satisfied,  
 
    λ iTx(xi−0, t) = λ i + 1Tx(xi+0, t)                                                                (3c) 
 
ensuring the continuity of heat flux at the interfaces. In the case of  perfect thermal contact 
between the layers, we have the continuity of temperature 
 
    T(xi  −0, t) = T(xi+0, t) ,  i  = 1,2,. . . ,m-1,                                                                  (3d) 

 
and in case there is thermal contact conductance at the interfaces, 
 
    −λi Tx(xi,t) = hi(T(xi − 0,t) −T(xi+0,t)),   i  = 1,2,. . . ,m-1,                                   (3d)* 
 
with the interface thermal contact conductance hi at the i-th  interface.  
Let us adapt the general mathematical model to our special experimental situation. Due to the 
symmetrical set-up of a centered inner source, the integration domain of equation (1) can be 
reduced to one half. Furthermore, concentrating on a sample simply consisting of two 
materials with perfect thermal contact we get the following conditions for our specialized 
problem with m=2 and x0=0 corresponding to (3a−d) 
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because of symmetry the heat flux vanishes  
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the outer boundary condition  and  the conditions at the interface                                                       
 
     λ1Tx (x1−0, t) = λ2Tx (x1+0,t)                                                                                              (4c) 
 
     T (x1  −0, t) = T (x1+0, t)  .                                                                     (4d) 
 
If d is half the thickness of the foil, we get the following form for the heat source q 
 

              .                                                                             (5) 


 <<≤

==
otherwise,0

,
)(),( 10 xdxq

xqtxq

 
In reality, the materials and thus the thermal properties of the thin foil (10-20 µm) and the 
inner layer are highly different. Considering the foil as a separate layer or neglecting the 
separate layer leads to a small difference in the calculated temperature distribution. 
Nevertheless, this difference is covered by the measurement uncertainty as shown in [10] by 
finite-element simulations. For simplicity, the different material properties of the foil are 
neglected in the following.  Then, the mathematical formulation is given by the heat 
conduction equation  
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with the initial condition (2), the boundary conditions (4a−b),  the interface conditions (4c−d) 
and the heat source q(x) given in (5).  
 
 
2.2. Analytic solution of the forward problem 
 
To solve the  nonhomogeneous heat transfer problem (6) in a layered composite medium, we 
start with homogeneous one with no heat generation  
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to obtain the Green’s function. When this function is available, the temperature distribution of 
(6) can be represented only in terms of Green’s function. 
Assume a separation of variables in space- and time-dependent functions in the form 
 
    )()(),( txutx Γ=T .                                                                                                                (8) 
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The time-variable function is the solution of )(tΓ
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The corresponding eigenvalue problem is given by 
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with the dimensionsless split eigenfunctions  
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where the index n indicates the dependence on the eigenvalue βn. The solution is subject to 
the boundary conditions 
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where we assume adiabatic conditions at the sample surface. The general solution uin of the 
eigenvalue problem (10) for a slab geometry can be written in the form 
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The first boundary condition (11a) requires that A1n=0. Without loss of generality one of the 
nonvanishing coefficients can be set to unity since one coefficient is arbitrary. We have 
chosen B1n=1. Moreover, the solution (12) has to fulfill the remaining conditions (11b-d) 
yielding the following equation in matrix form for the determination of the coefficients A2n 
and B2n 

 5 



 

     

























=































































−































−










−











−










−











0

0

01

sincos0

sincossin

cossincos

2

2

2

2

2

2

2

1

2

1

1

1

1

2

2

1

2

1

2

1

1

1

n

n

nn

nnn

nnn

B

A

a
x

a
x

a
x

a
x

a
x

a
a

a
x

a
x

a
x

ββ

βββ
λ
λ

βββ

             (13) 

 
The matrix of coefficients in equation (13) depends on the eigenvalues βn of the problem (10), 
unkown so far. Nevertheless, they are determined by the requirement of the vanishing 
determinant, the condition for the existence of a solution of equation (13). After having 
determined the βn, in general by numerical methods, we obtain for A2n and B2n 
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Now, with (14) and the knowledge of the eigenvalues βn the eigenfunctions uin defined in 
equation (12) are known and the general solution of (7) becomes 
 

     'T      , i = 1,2                                 (15) )'()'()(1),( 0

2

1 1
1

2

dxxTxuxue
aN

tx
j

x

x n
jnin

t

j

j

n
i

j

j

n∑ ∫ ∑
=

∞

=

−

− 










= βλ

 
where  

     






≤<

≤≤
=

212

11

for),,(

0for),,(
),(

xxxtxT

xxtxT
txT  

 
and the norm Nn is given by  
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The expression in brackets in equation (15) is the Green’s function for the homogeneous 
problem. By replacing t by (t-τ)  we obtain the Green’s function Gij for the composite medium 
for the nonhomogeneous case  
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   xi-1< x ≤ xi, i=1,2,   xj-1 < 'x  ≤ xj, j=1,2  . 
 
It represents the response at location x and at time t to an impulse located at  at time τ. There 
are an infinite number of discrete eigenvalues β

'x
n and the corresponding eigenfunctions uin. 
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The eigenvalues are ordered by magnitude β1<β2<⋅⋅⋅<βn<⋅⋅⋅. For more details, see references 
[11] – [13]. Finally, the complete temperature distribution in the sample can be calculated by 
the resulting formula, where T1(x , t) stands for the temperature in the inner layer and T2(x , t) 
for that in the outer layer 

    ∑ ∫ ∫∫
=

= 











+=
−−

2

1 0
00

11

'),'(),'|,,(')'(),'|,(),(
j

t x

x j

j
ij

x

x
iji

j

j

j

j

ddxxq
a

xtxGdxxTxtxGtx ττ
λ

ττ
τ

T              (18) 

 
                                                                                                     in xi-1< x ≤ xi, i=1,2 
 
We assume, that the initial temperature in the sample at t = 0 is constant, T0(x) = T0, as can be 
expected for the experimental configuration. Then, using the substitution 
 
                                                                                                           (19) 0),(),( TtxTtxT ii −=∆
 
for the temperature rise , the derivation of the solution is very similar, but in the resulting 
expression, the first integral of (18) vanishes. Remember that the constant heat source (5) is 
limited to a thin heater, in the one-dimensional model to a short interval, and the solution 
becomes 
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The transient signal, measured, i.e. the temperature rise in the source plane, is calculated from 
(20) and the derived Green’s function (17) at x = 0 to be 
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Adding the initial temperature T0  at t = 0 corresponding (19) we get the temperature signal 

, the solution of the forward problem. ),0(1 tT
 
 
2.3. The inverse problem 
 
The objective is to find the thermal conductivity and diffusivity values of the two-layered 
composite under test which are consistent with the experimental measuring signal. The 
underlying mathematical model relating the experimental set-up and the thermal properties of 
the sample with the measuring signal is generally given by equations (4) – (6). The explicit 
form, equation (21), has been derived in the last section. This analytic solution has the 
advantage of requiring very little computing time compared with numerical solution methods 
as finite-element or finite-difference methods. On the other hand, the experimental 
configurations for which analytic expressions can be derived simulating the measuring signal 
in multi-layered samples are limited to special cases. 
Let the vector Tsim(λ1,a1,λ2,a2,t) be the simulated measuring signal depending on the thermal 
properties and discrete times t = (t1, …, ts), and Tmes(t) the vector of the measuring signal. The 
related inverse problem of parameter identification is formulated as an output-least squares 
problem 
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based on the repeated solving of the forward problem, in conjunction with a minimization 
strategy. The subscript indicates the l2-norm.  It is solved  by the Levenberg-Marquardt 
method [14] as published by the program library of the International Mathematical Subroutine 
Library (IMSL). The algorithm combines the Gauss-Newton method with the gradient method 
which is well suited for handling ill-conditioned problems. This procedure was also 
successfully applied to homogeneous and multi-layered problems, solving the forward 
problem by a finite-element method [8] , [9]. 
 
 
3. NUMERICAL EXPERIMENTS 
 
Now, we test the proposed technique by reconstructing thermal transport properties of a 
layered sample obtained from simulated data. The geometrical dimensions and the thermal 
properties of the sample are chosen as follows: 
Thickness of the heater 2d = 20µm, thickness of the inner layer d1 = 20 mm, thickness of the 
outer layer d2 = 20 mm, thermal properties of the inner layer λ1 = 1.5Wm-1K-1 and  
a1 = 1.0 mm2s-1 and of the outer layer λ2= 0.5 Wm-1K-1 and a2 =0.5 mm2s-1. 
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Figure 2. The determinant of the coefficients given in equation (13) versus β. 
 
First, the matrix of coefficients is calculated given in equation (13). From the requirement that 
the determinant of the coefficients must vanish, we determine the eigenvalues of the 
corresponding eigenvalue problem (10). Figure 2 shows the determinant as a function of β 
where the zeros are the wanted eigenvalues. A precise calculation was achieved using a 
subroutine of the IMSL library for the determination of zeros of transcendental functions and 
furnishes an arbitrary number of eigenvalues βn .The current number r needed depends on the 
convergence properties of the series in equation (21). In our example, the condition βi < 1.5 is 
sufficient, and up to r = 21 eigenvalues have to be taken into account; their values are listed in 
Table 1.  
 

 8 



 
 

0.0692 0.5640 1.0562 
0.1424 0.6322 1.1279 
0.2103 0.7055 1.1955 
0.2813 0.7743 1.2683 
0.3535 0.8440 1.3384 
0.4210 0.9170 1.4069 
0.4935 0.9847 1.4802 

       
                     Table 1.  The eigenvalues of equation (10) smaller than 1.5. 
          
The corresponding measuring signal calculated by (21) as well the signal for a homogenous 
sample (λ1 and a1)  are shown in Figure 3. In the first interval [0,tz], only the thermal 
properties of the inner core govern the temperature rise. Therefore, the curves of the two-
layered and the homogeneous sample coincide. For t > tz the temperature rise is determined by 
the thermal conductivity and diffusivity of both the inner core and the outer layer as well at  
the later times also by the surroundings. 
As expected from earlier investigations using the finite-element method for the forward 
problem of the hot strip technique, the inverse problem of the simultaneous identification of 
the four properties λ1,a1,λ2 and a2 is highly ill-posed. To improve the condition of the 
problem, the thermal properties have to be determined one after another, starting with the 
inner layer. As a first step, the initial interval [0,tz] of the signal is selected to identify the  
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Figure 3. Calculated temperature rise for a layered sample and a corresponding 
homogeneous sample (a1,λ1). 
 

thermal properties of the inner layer. In a subsequent step, the determination of the properties 
of the outer layer is carries out within the remaining interval (t > tz) keeping the results of the 
first step fixed. This procedure substantially improves the accuracy of the result to the exact 
values. 
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In principle, the method can be extended to more than two layers. Nevertheless, a worsening 
of the condition of the inverse problem can be expected, resulting in a higher uncertainty of 
the results. 
 
 
 
 
4. SUMMARY 
 
Transient methods are widely used to determine the thermal properties of some materials, but  
almost always for homogeneous media. For the situation of layered composites a new fast 
identification algorithm is presented which is based on an analytic solution of the forward 
problem and a numerical least-squares solver. For the measuring configuration, a plane source 
is favored because a one-dimensional treatment is possible in this case. The method is 
designed for simultaneous determination of the four properties,  viz. thermal diffusivity and 
conductivity of the two layers. 
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